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1 Introduction

Similar to electric machines, the mechanical device described in [1] consists of
an assembly of stationary and moving parts made of non-magnetic material
like aluminum or plastic. In both parts permanent magnets are inserted
following keen geometrical patterns. The inventor claims in [1] that the
device is a prime mover ”on its own”, able to unfold mechanical energy
without recurrence to other energy sources. Although not all constituting
parts of the apparatus have yet been fully disclosed, a few experiments
with working prototypes indicate that the claims should be at least not
prematurely discarded [2].

Recently, while searching for energy harvesting opportunities and moti-
vated by the ideas in [1], the authors in [3] have notice that, by introducing
excentric displacements in permanent magnet structures similar to the ones
in [1], an incommensurable torque can be perceived by numerical calcula-
tions with FEM.

On account of analytical formulations only, and backboned by inter-
pretations of main-stream theories in Physics, the model presented in the
following sections attempts describing in its simplest form the fundamen-
tal behaviour of the prime mover as claimed by [1]. The model is easy to
understand, therefore easy to be falsified by an interested reader.

2 Magnetic forces acting on current loops

A magnetic force originates from and acts upon electrical charges possessing
a velocity. The magnetic force ~F which acts on an eletrical charge q moving
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with velocity ~v in the magnetic field ~B is given by [4]

~F = q~v × ~B, (1)

while an eletrical charge q moving with velocity ~v will produce a magnetic
field ~B around itself as

~B =
µ0

4π
q
~v × ~r
r3

, (2)

where ~r is the vector from the charge to the field point, and µ0 is the
electromagnetic intrinsic inductance per unity length of free space, with
µ0 = 4π × 10−7[H/m].

On account of (1) and (2), the interaction of magnetic forces between
currents is formulated as a law of forces acting between two infinitesimal
current elements at a given distance from each other and having a given
orientation with respect to one other [5].

Consider two filamentary circular current loops (primary and secondary)
as sketched in Fig. 1, with inner radii RP and RS and circulating currents
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Fig. 1: Circular current loops with angular misalignment. The primary loop
is fixed, the secondary can translate around a pivot axis.
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IP and IS , respectively. The center of the primary loop is located at the
origin of a carthesian system (x, y, z) characterized by the unity vectors

~ax = ~ay × ~az, ~ay = ~az × ~ax,~az = ~ax × ~ay, (3)

with ~az normal to the loop plane. The secondary loop can have circun-
ferential translational movement with constant radius, rS , perpendicular to
a pivot line parallel to the y-axis, and with turning point at coordinates
(x = 0, y = yC , z = −rP ). The secondary loop plane is tangent to the trans-
lational trajectory, from which the inclination is characterized by the angle
φ referenced to the z-axis.

By observation of Fig. 1 it is possible to derive that the secondary loop
has center at C(xC , yC , zC), where

xC = rS sinφ, (4)

zC = rS cosφ− rP , (5)

and yC may be freely choosen. The associated normal and tangential unity
vectors to the secondary loop are found to become

~ar = sinφ~ax + cosφ~az, (6)

~aφ = cosφ~ax − sinφ~az, (7)

respectively, with ~ar = ~aφ × ~ay, ~aφ = ~ay × ~ar, ~ay = ~ar × ~aφ.
For given inclination φ and pivot location yC , the resulting magnetic

forces actuating on the secondary loop can be determined through fully
analytical equations [6]. In Appendix A a detailed derivation is given for
these force components, found to be

~FS = Fx~ax + Fy ~ay + Fz ~az (8)

where Fx, Fy and Fz are calculated with the formula (27) in Appendix A.
Alternatively,

~FS = Fr ~ar + Fy ~ay + Fφ~aφ, (9)

where the radial and translational force components with respect to the
pivot axis are given by

Fr = Fx sinφ+ Fz cosφ, (10)

Fφ = Fx cosφ− Fz sinφ (11)

respectively. So, Fy is the axial force along the pivot axis, and the torque
around it becomes

~TS = FφrS ~ay. (12)
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3 Energy excess ?!

The intention now is to explore the energy requirements to translate the
secondary loop around the pivot axis (0 ≤ φ ≤ 2π in Fig. 1), when the axial
position of the turning point, i.e. coordinate yC , is also allowed to vary as
function of the inclination φ [3].

For instance, let’s impose that also the turning point (therefore the co-
ordinates of the loop center) moves in synchronism with the inclination φ
according to

xC = rS sinφ, (13)

yC = A0 +AS sin θ, with θ ≡ φ, (14)

zC = rS cosφ− rP , (15)

where A0 is an offset and AS the amplitude of the axial harmonic displace-
ment of the turning point, which is made synchronized with the changes in
xC and zC given by (4) and (5).

By assuming infinitesimal increments dφ, in the limit sense the energy
incrementals introduced by the translational and axial forces in (9) are

dQφ = FφrS dφ, (16)

dQy = Fy dyC = FyAS cosφdφ, (17)

respectively. The summation of these energy incrementals yields QΣ, the
total energy necessary to realize one single joint translation and longitudinal
cycle of the secondary loop, as given by

QΣ = Qφ +Qy, (18)

where, in view of (16) and (17),

Qφ =

∫ 2π

0
FφrS dφ, (19)

Qy =

∫ 2π

0
FyAS cosφdφ. (20)

Fig. 2 illustrates the forces Fφ and Fy as function of the inclination φ, on
account of the loop parameters in Table 1. Also, the corresponding values of
the energy incrementals dQφ, dQy and dQΣ are shown in Fig. 3. However, a
surprising numerical result is obtained for the total energy involved in Fig.
3, namely

Qφ = −0.7420nJ ;Qy = 1.0131nJ ; (21)

QΣ = 0.2711nJ. (22)
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Tab. 1: Parameters and geometrical dimensions of the current loops
Parameter Value Description

IP [A] -1.0 Current primary loop
IP [A] 1.0 Current secondary loop
RP [mm] 5.0 Inner radius prim loop
RS [mm] 5.0 Inner radius sec loop
rP [mm] 30.0 Distance prim loop to pivot axis
rS [mm] 25.0 Translational radius of sec loop
A0 [mm] 9.5 Off-set position of turning point
AS [mm] 17.0 Amplitude longitudinal motion sec loop

Fig. 2: Illustration of the translational and axial forces during the joint tra-
jectory of the secondary loop around and along the pivot axis, on
account of the parameters in Table 1.
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So, after one translation of the secondary loop around the pivot axis, an
energy excess remains (QΣ > 0)! 1

Fig. 3: Translational and axial energy incrementals during the trajectory of
the secondary loop around and along the pivot axis (θ ≡ φ).

In order to quantify the quality of the numerical results above, Fig. 4
and Fig. 5 show the energy incrementals when translation is performed
without axial displacement of the turning point (0 ≤ φ ≤ 2π and θ ≡ 0), or
with axial displacement of the turning point without translation of the loop
(φ ≡ 0 and 0 ≤ θ ≤ 2π), on account of the same parameters in Table 1. For

1 A Matlab script is given in Appendix B for the interested reader who eventually would
like to check the validity of the performed calculations.
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Fig. 4: Translational energy incrementals when the trajectory of the sec loop
is around the pivot axis without axial displacement of the turning
point (θ ≡ 0).

the first situation follows

Qφ = −3.0371× 10−16 nJ ;Qy = 0nJ ; (23)

QΣ = −3.0371× 10−16 nJ ; (24)

and for the latter

Qφ = −7.3479× 10−16 nJ ;Qy = −1.4171× 10−13 nJ ; (25)

QΣ = −1.4245× 10−13 nJ. (26)

As expected for both cases, virtually no energy excess appears , sinceQΣ ≈ 0
in (24) and (26) if compared to (22), up to the numerical precision of the
used software.
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Fig. 5: Axial energy incrementals when the trajectory of the sec loop is along
the pivot axis without translational movement (φ ≡ 0).

As a result of the back-and-forward axial movement according to (14), in
conjunction with the choosen geometrical parameters in Table 1, the axial
force Fy acting on the secondary current loop is predominantly positive
(repulsion) when positive incremental displacements of the turning point
occurs along the pivot axis (−π/2 < φ < π/2). In the range where negative
incremental displacements of the turning point take place (return path), the
axial force is neglegible (that is to say, barely axial attraction), as shown in
Fig. 3. As a result, the energy incrementals dQy in (17) are predominantly
positive.

On the other hand, although the circunferential force Fφ in Fig. 3 is on
average negative (leading therefore to an average attraction torque between
the loops), the resulting energy summation Qφ, due to the translational
displacements, is not high enough to fully compensate for the energy injected
by the axial force Fy, leading to energy excess after one turn around of φ.
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The interpretation of the result in (22) is quite appealing. Depending
on the angular inclination of the secondary loop, there will be repulsive
(positive sign) or attractive (negative sign) forces between the loops. In
order to perform one rotation (from 0 to 2π radians) of the moving parts
whereon the the secondary coil is expected to be assembled (a physical
rotor), and, at the same time, to move the rotor back-and-forth along the
pivot axis, it is necessary to impose an average a positive axial force to inject
1.0131nJ into the system. We get back 0.7420nJ (negative sign) due to
the tangential force on the rotor.

So, on acount of the interaction of forces between the loops, in totalQΣ =
0.2711nJ is transferred to the inertia of the moving parts by completing
one turn around. After that, the rotor can be released since its inertia
will be repeatedly accelerated on its own due to the taken-in energy excess
(QΣ > 0). If friction is present, the rotor will stabilize at the rotational/axial
velocities corresponding to the dissipation of 0.2711nJ per revolution.

In the next section it is argumented further about a possible source of
energy that would make the outcomes above in agreement with main-stream
theories in Physics.

4 Free Space as a source of energy in abundance

A circular current loop in a plane, as in Fig. 1, creates a magnetic moment
with magnitude equal to the current multiplied by the area enclosed by the
current contour and the direction is the same as the normal to the surface.
Magnetic moments are the atomic source of magnetism [4].

The permanent magnet acquires its magnetic properties owing to the or-
bital circulation and rotation of electrons, which creates magnetic moments
per unit volume of material, also called magnetization. Quite peculiar, the
permanent magnet is characterized by the property that its constituent mag-
netic moments are all aligned in the same direction, and that the atomic mo-
tion of electrons is non-dissipative [7]. Otherwise stated, thermal energy is
not involved in the origins of magnetisation of a permanent magnet. On the
contrary, as the temperature decreases towards absolute zero, the stronger
will be the magnetic field created by a permanent magnet [8].

It is forecasted by Quantum Field Theory [9] that the free space has
implicitly a vastly complex structure. All of the properties that a particle
may have (like spin, or polarization in the case of light, energy, and so on) are
present at each and every point in space, like in a chaotic ”sea of activity”.
On average, all these superimposed properties cancel out, and the free space
is, after all, empty in this sense.
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Moreover, electrons cold perform the interface for converting chaotic en-
ergy in free space to useful energy in a macroscopic scale [10]. In particular,
the magnetization activity in a permanent magnet would be an example of
a continuously on-going energetic process fed by the random energy of the
free space. According to [10], the underlying reason why in an atomic struc-
ture electrons (negative charge) do not colapse to protons (positive charge)
is just because the electrons underway to the otherwise expected collision
catch energy from photons (particles without mass and charge) present in
the free space, being therefore repulsed back from the protons. After that,
energy is released from the electrons to the free space again in the form
of photons. So, the stability of the atoms would be due to the persistent
interaction of electrons with the chaotic energy in free space.

In the case of permanent magnets, since the circulation of electrons in
the atomic structure is in joint synchronism, with all magnetic moments
oriented in the same direction, the photons that are incessantly released
back to the free space would then create colectively a coherent pattern in
the space around the magnet, what builds up the magnetic field (vector ~B
in (2) ), as characterized by closed magnetic flux lines. And so, one magnet
would ”feel” the force of another one in its proximity.

The closed current filaments with linear wires in Fig. 1 can be considered
elementary models of permanent magnets. As long as current circulates in
the loops, the magnetic field will be mantained in space, and there will be
forces actuating on the wires. On account of the fundamental analytical
equations in Section 3, it is forecasted that a quirky rotation of the loops
unfolds useful mechanical energy. In this case, the primary source of energy,
the one that keeps the currents permanently circulating in the loops (gen-
erating magnetic moments by this way), would be the ”sea of activity”, the
chaotic energy in free space. Having saying that, the excess energy found in
(22) is not in contradiction with any of the Three Laws of Thermodynamics
[11].

5 Conclusion

The presented model for the phenomena claimed in [1] follows an engineer-
ing approach, in the sense that essentially ”all models are wrong, but some
are useful” [12]. The accompaynying analytical equations are an invitation
to try other shapes or combinations of (multiple) current loops 2 with syn-

2 As an aside, circular current loops can also represent elementary cylindrical electro-
magnets, for which the source of energy is evident.
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chronized (or not) relative displacements among then, aiming at discovering
other possible geometries that, in theory, yield energy in abundance. But it
remains a valid research question: can the proposed model be of some value
for the synthesis of working prototypes, or is there something fundamentally
wrong with it?
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Appendix A

A general formula for calculating the magnetic force between inclined circu-
lar loops is presented in [6]. In the case of the geometry considered in Fig.1,
for given inclination angle φ, after some manipulations the force components
in (8) actuating on the secondary current loop are found to become

~FS = Fx~ax + Fy ~ay + Fz ~az

with

Fx =
µ0IP ISRS

8π
√
RP

∫ 2π

0
Ix dφ,

Fy =
µ0IP ISRS

8π
√
RP

∫ 2π

0
Iy dφ, (27)

Fz =
µ0IP ISRS

8π
√
RP

∫ 2π

0
Iz dφ,

where

Ix =
k(

x2
S + y2

S

)5/4 [zSyS`SzL0 +
√
x2
S + y2

S `SyS0

]
,

Iy =
k(

x2
S + y2

S

)5/4 [zSxS`SzL0 +
√
x2
S + y2

S `SxS0

]
, (28)

Iz =
k(

x2
S + y2

S

)5/4 zS [xS`Sy − yS`Sx] ,
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and

k2 =
4RP

√
x2
S + y2

S(
RP +

√
x2
S + y2

S

)2

+ z2
S

,

K(k) =

∫ π/2

0

1√
1− k2 sin2 ξ

dξ,

E(k) =

∫ π/2

0

√
1− k2 sin2 ξ dξ, (29)

L0 = 2K(k)− 2− k2

1− k2
E(k),

S0 = 2
√
x2
S + y2

SK(k) +
2
√
x2
S + y2

S −
(
RP +

√
x2
S + yS

)
k2

1− k2
E(k).

Further,

`Sx = − cos2 φ,

`Sy = − sinφ, (30)

`Sz = sinφ cosφ,

and

xS = xC −RS cosφ sinφ,

yS = yC +RS cosφ, (31)

zS = zC +RS sin2 φ,

or

xS = rS sinφ−RS cosφ sinφ,

yS = A0 +AS sinφ+RS cosφ, (32)

zS = −rP + rS cosφ+RS sin2 φ,

since xC , yC and zC are defined in (13), (14) and (15), respectively.



Appendix B 13

Appendix B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Main function: Joule_1x2Loops

%

% Analytical description of the energy related to

% the magnetic torque and force as developed by

% 1 SET of TWO current-carrying circular loops

% placed on concentric cyclindrical surfaces

%

% Accompanying functions : Joule_2Loops.m & TorqueForce_2Loops.m;

%

%------------------------

% jduarte @ July 22, 2018

%------------------------

% Parameters: Primary (stator) and Secondary (rotor) circular loops ------

par.IP =-1; par.IS =1; % loop currents; mind the polarity!

par.RP = 5e-3; par.RS = 5e-3; % inner radii

par.rP = 30e-3; % perpendicular distance to the zz-axis

par.rS = 25e-3; % perpendicular distance to the zz-axis

par.AS = 17e-3; % amplitude of harmonic displacement

par.A0 = 9.5e-3; % off-set displacement turning point

par.steps = 1000; % integration steps (should be multiple of 2)

%

par.Fpu = 1e-9; % normalization of forces in nN

%------------------------------------------------------------------------

% Main reference frame: xx-, yy-, zz- orthogonal axes ------------------

% - Two concentric cylidrical surfaces along zz-axis

% - Prim- and sec- loops are placed on the cylindrical surfaces

% -- therefore with loop normal vectors perpendicular to the zz-axis

% phiP : inclination of prim-loop normal vector w.r.t. zz-axis

% phiS : inclination of sec-loop normal vector w.r.t. zz-axis

% zzP : longitudinal position of center prim-loop in the zz-axis

% zzS : longitudinal position of center sec-loop in the zz-axis

% thetaS : angle used for calculating cam displacement along zz-axis

%
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% Initial cylindrical placement of the loops

% -- inclination of prim and sec normal-vectors w.r.t. zz-axis

phiP0 = 0; phiS0 = 0;

% -- longitudinal position of center prim- and sec-loops on the zz-axis

zzP0 = 0; zzS0 = par.A0;

%------------------------------------------------------------------------

% Interaction between loops ---------------------------------------------

% phiS_ : array (of par.steps) with rotation angles 0< phiS <2pi

% Tzz_ : array with normalized torques corresponding to phiS_

% Fzz_ : array with normalized torques corresponding to phiS_

% ------------------------

[phiS_,jTzz_,jFzz_] = Joule_2Loops(phiS0,phiP0,zzS0,zzP0,par);

%

%------------------------------------------------------------------------

% Total energy requirement ----------------------------------------------

JouleTzz = sum(jTzz_),

JouleFzz = sum(jFzz_),

JouleS = JouleTzz +JouleFzz,

%------------------------------------------------------------------------

% Show energy incrementals as function of radial position sec-loop ------

x =phiS_./pi -1; % normalized horizontal axis from -pi < phiS < pi

y1 = zeros(1,par.steps); y2 =zeros(1,par.steps);

for i =1:par.steps/2

y1(i) =jTzz_(i+par.steps/2); y1(i+par.steps/2) =jTzz_(i);

y2(i) =jFzz_(i+par.steps/2); y2(i+par.steps/2) =jFzz_(i);

end

y3 = y1 +y2; % netto energy incremental

%

figure(1)

plot(x,y1,’--k’,x,y2,’-.k’,x,y3,’-k’,’LineWidth’,1);

title(’Energy incrementals’,’Interpreter’,’latex’);

xlabel(’$\phi /\pi$’,’Interpreter’,’latex’);

ylabel(’$dQ$ /nJ’,’Interpreter’,’latex’);

legend({’$dQ_\phi$’,’$dQ_y$’,’$dQ_\Sigma$’},...

’Interpreter’,’latex’,’Fontsize’,10);

grid on;
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% end main function: Joule_1x2Loops

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

function [phiS_,jTzz_,jFzz_] = Joule_2Loops(phiS0,phiP0,zzS0,zzP0,par)

% 2 loops perpendicular to the zz-axis

% Incremental Joule when sec-loop is translated by increments (0<phiS<2*pi)

% and axially displaced (0<thetaS<2*pi) at the same time

%

% Accompanying function : TorqueForce_2Lopps.m

%

%------------------------

% jduarte @ July 22, 2018

%------------------------

% Loop parameters -----------------------------------------------------

% par.IP ; par.IS; % Amp

% par.RP ; par.RS; % Own radii

% par.rP ; par.rS % radial distances perpendicular to the zz-axis

AS =par.AS; % amplitude of cam displacement along the zz-axis

% Main reference frame: ortogonal xx-, yy-, zz- axes ------------------

% - Two cylidrical surfaces concentric along zz-axis

% - Primary and secondary loops are placed on the cylindrical surfaces

% -- therefore with loop normal vectors perpendicular to the zz-axis

% phiP : inclination of prim-loop normal vector w.r.t. zz-axis

% phiS : inclination of sec-loop normal-vector w.r.t. zz-axis

% zzP : longitudinal position of center prim-loop in the zz-axis

% zzS : longitudinal position of center sec-loop in the zz-axis

% thetaS : angle used for calculating cam displacement along zz-axis

% initial conditions ---------------------------------------------------

thetaS =0; phiS =phiS0; phiP =phiP0; zzP =zzP0;

phiS_ = []; jTzz_ = []; jFzz_ = []; % recording arrays

% calculations ---------------------------------------------------------

k =0; % counter for display of calculations on-the-fly

dS = 2*pi/par.steps; % incremental value for phiS and thetaS
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for i=1:par.steps % qsiS and phiS <= 2*pi,

%

phiS = phiS +dS; % increase inclination angle

%

thetaS = thetaS +dS; % increase angle for axial displacement

zzS = zzS0+AS*sin(thetaS); % turning point absolute location

dzzS = AS*cos(thetaS)*dS; % limit case differential displacement

%

[Tzz,Fzz] = TorqueForce_2Loops(phiS,zzS,phiP,zzP,par);

jTzz = Tzz*dS; % energy increment due to torque (circunf force)

jFzz = Fzz*dzzS; % energy increment due to axial force

%

% register

phiS_ =[phiS_,phiS];

%phiS_ =[phiS_,thetaS]; % when showing only axial displacements

jTzz_ =[jTzz_,jTzz]; jFzz_ =[jFzz_,jFzz];

%

k =k+1;

if mod(k,100) == 0, fprintf(’.’); end % visualization

%

end % while

fprintf(’\n’);

end % function TorqueForce_2Loops

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

function [Tzz,Fzz] = TorqueForce_2Loops(phiS,zzS,phiP,zzP,par)

% According to

% S. Babic & C. Aykel;"Magnetic Force between Inclined Circular Loops

% (Lorentz approach); Progress in Electromagnetic Research B, Vol. 38,

% 333-349, 2012.

%

%------------------------

% jduarte @ July 22, 2018

%------------------------

% Main reference frame: xx-, yy-, zz- orthogonal axes -----------------
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% - Two concentric cylidrical surfaces along the zz-axis

% - Prim- and sec- loops are placed on the cylindrical surfaces

% -- therefore with loop normal-vectors perpendicular to the zz-axis

% phiP = inclination of prim-loop normal vector w.r.t. zz-axis

% phiS = inclination of sec-loop normal vector w.r.t. zz-axis

% zzP = longitudinal position of center prim loop in the zz-axis

% zzS = longitudinal position of center sec loop in the zz-axis

% Loop parameters -----------------------------------------------------

IP = par.IP; IS = par.IS; % Amp

RP = par.RP; RS = par.RS; % Inner radii

rP = par.rP; rS = par.rS; % radial distances perpendicular to the zz-axis

Fpu = par.Fpu; % normalization of force values to nN

% Prim-loop creates reference frame XYZ with i-, j-, k- unity vectors ---

% - i-vector in the loop plane and perpendicular to zz-axis

% - j-vector in the loop plane and parallel to zz-axis

% - k-vector normal to the loop and perpendicular to zz-axis

%

% Prim-loop placed at plane XOY (Z=0) -----------------------------------

% - axis of X parallel to i-vector

% - axis of Y parallel to j-vector (and also parallel to zz-axis)

% - axis of Z parallel to k-vector

% - prim loop centered at O(x=0,y=0,z=0)

% Sec-loop with coordinates referenced to XYZ ---------------------------

% - sec-loop normal vector: a*i +b*j + c*k, with b=0

% --- with center at: C(xC, yC, zC)

% --- and a point on the loop circle: DS(x0, y0, z0)

% --- loop plane: a*x +b*y +c*z +D = 0

% Parameters sec loop with reference to XYZ -----------------------------

%

% angle inclination of sec-loop normal vector w.r.t. the k-vector

phi = phiS -phiP;

% -- sec-loop nomal vector : N = sin(phi)*i +0*j +cos(phi)*k with

% -- sec-loop with center at: C(xC, yC, zC)

xC = rS*sin(phi);

yC = zzS-zzP;

zC = rS*cos(phi) -rP;



Appendix B 18

%

% Plane of sec-loop w.r.t. XYZ frame ----------------------------------

% --- : sinphi*(x-xC) +0*(y-yC) +cosphi*(z-zC) =0

% --- : a*x +b*y *c*z +D = 0

% --- : sin(phi)*x +0*y +cos(phi)*z +D =0

a = sin(phi); b = 0; c = cos(phi); D = rP - rS;

%

% Sec loop unit vectors w.r.t. XYZ frame ------------------------------

% N = (nx,ny,nz) u =(ux,,uy,uz) v = (vx,vy,vz)

L = sqrt(a^2 +b^2 +c^2); l =sqrt(a^2 +c^2);

nx = a/L; ny = b/L; nz = c/L;

ux =-a*b/(l*L); uy = l/L; uz =-b*c/(l*L);

vx =-c/l; vy = 0; vz = a/l;

%--------------------------------------------------------------------

% Force components on the sec-loop w.r.t. the prim-loop i-, j-, k-vectors

mu0 = 4*pi*1e-7;

F = mu0*IP*IS*RS/(8*pi*sqrt(RP))/Fpu; % normalization

%

% Integration around 0< phiS <2*pi / analytical ---------------------

Fx = F*integral(@(w)Ix(w),0,2*pi);

Fy = F*integral(@(w)Iy(w),0,2*pi);

Fz = F*integral(@(w)Iz(w),0,2*pi);

%

%----------------------------------------------------------------------

% Tangential force in sec-loop w.r.t. zz-axis (= normal to j-vector) --

Ft = Fx*cos(phi) + Fz*cos(phi+pi/2);

%

% Resulting torque/force components w.r.t. zz-axis -------------------

Tzz = Ft*rS; % torque around zz-axis

Fzz = Fy; % longitudinal force along the zz-axis

%----------------------------------------------------------------------

%

% end TorqueForce_2Loops

%----------------------------------------------------------------------

% Local Functions

%

function h = Ix(theta) % ----------------------------------------------
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%

costheta =cos(theta); sintheta =sin(theta);

%

xS = xC +RS.*ux.*costheta +RS.*vx.*sintheta;

yS = yC +RS.*uy.*costheta +RS.*vy.*sintheta;

zS = zC +RS.*uz.*costheta +RS.*vz.*sintheta;

xyS = sqrt(xS.^2 +yS.^2);

%

lSx = -ux.*sintheta +vx.*costheta;

lSy = -uy.*sintheta +vy.*costheta;

lSz = -uz.*sintheta +vz.*costheta;

%

% elliptic integrals

k2 = 4.*RP.*xyS./((RP+xyS).^2 +zS.^2); k =sqrt(k2);

[K,E] = ellipke(k2); % 1- and 2-order complete elliptic integrals

L0 = 2.*K - E.*(2-k2)./(1-k2);

S0 = 2.*xyS.*K - E.*(2.*xyS -(RP +xyS).*k2)./(1-k2);

%

% Integrands

kk = k./(xS.^2+yS.^2).^(5./4);

h = kk.*(zS.*yS.*lSz.*L0 +xyS.*lSy.*S0);

% Ix = kk*(zS*yS*lSz*L0 +xyS*lSy*S0);

% Iy = -kk*(zS*xS*lSz*L0 +xyS*lSx*S0);

% Iz = kk*zS*(xS*lSy -yS*lSx)*L0;

%

end % Ix --------------------------------------------------------------

function h = Iy(theta) %-----------------------------------------------

%

costheta =cos(theta); sintheta =sin(theta);

%

xS = xC +RS.*ux.*costheta +RS.*vx.*sintheta;

yS = yC +RS.*uy.*costheta +RS.*vy.*sintheta;

zS = zC +RS.*uz.*costheta +RS.*vz.*sintheta;

xyS = sqrt(xS.^2 +yS.^2);

%

lSx = -ux.*sintheta +vx.*costheta;

lSy = -uy.*sintheta +vy.*costheta;

lSz = -uz.*sintheta +vz.*costheta;

%
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% elliptic integrals

k2 = 4.*RP.*xyS./((RP+xyS).^2 +zS.^2); k =sqrt(k2);

[K,E] = ellipke(k2);

L0 = 2.*K - E.*(2-k2)./(1-k2);

S0 = 2.*xyS.*K - E.*(2.*xyS -(RP +xyS).*k2)./(1-k2);

%

% Integrands

kk = k./(xS.^2+yS.^2).^(5./4);

h = -kk.*(zS.*xS.*lSz.*L0 +xyS.*lSx.*S0);

% Ix = kk*(zS*yS*lSz*L0 +xyS*lSy*S0);

% Iy = -kk*(zS*xS*lSz*L0 +xyS*lSx*S0);

% Iz = kk*zS*(xS*lSy -yS*lSx)*L0;

%

end % Iy ----------------------------------------------------------------

function h = Iz(theta) %-------------------------------------------------

%

costheta =cos(theta); sintheta =sin(theta);

%

xS = xC +RS.*ux.*costheta +RS.*vx.*sintheta;

yS = yC +RS.*uy.*costheta +RS.*vy.*sintheta;

zS = zC +RS.*uz.*costheta +RS.*vz.*sintheta;

xyS = sqrt(xS.^2 +yS.^2);

%

lSx = -ux.*sintheta +vx.*costheta;

lSy = -uy.*sintheta +vy.*costheta;

lSz = -uz.*sintheta +vz.*costheta;

%

% elliptic integrals

k2 = 4.*RP.*xyS./((RP+xyS).^2 +zS.^2); k =sqrt(k2);

[K,E] = ellipke(k2);

L0 = 2.*K - E.*(2-k2)./(1-k2);

S0 = 2.*xyS.*K - E.*(2.*xyS -(RP +xyS).*k2)./(1-k2);

%

% Integrands

kk = k./(xS.^2+yS.^2).^(5./4);

h = kk.*zS.*(xS.*lSy -yS.*lSx).*L0;

% Ix = kk*(zS*yS*lSz*L0 +xyS*lSy*S0);

% Iy = -kk*(zS*xS*lSz*L0 +xyS*lSx*S0);

% Iz = kk*zS*(xS*lSy -yS*lSx)*L0;
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%

end % Iz -----------------------------------------------------------------

%

% end Local Functions

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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